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The anomalous dispersion of noninteracting particles randomly walking in a 
network is considered. It is shown that the existence of large dangling branches 
attached to a backbone induces a "' l / f  "-like behavior in the current 
autocorrelation function at low frequencies. The waiting times associated with 
dangling loops scale like t -3/2. The size of the dangling branches provides a 
lower cutoff to the power law behavior. When the side branches are infinite, self- 
similar structures, the power law behavior persists up to a zero frequency. The 
currents we consider are created either by a bias on the random walk or by a 
current source. We consider both the total current, which is often referred to in 
the literature, and the current measured at endpoints of~a specimen attached to 
a (model) battery. The differences and similarities between the two 
corresponding correlations are analyzed. In particular, we find that in the 
second case " l / f "  noise exists only for large bias. When a statistical distribution 
of dangling branches is considered, we find that the largest power of frequency 
in the spectrum is 1.13. Much of our results are true when the dangling branches 
are replaced by "traps" having waiting time distributions that equal those of the 
branches. The waiting time associated with a power law distribution of dangling 
loops (m-X: m is the length of the loop) scales like t -l-lx/2). However, it is 
shown that geometry alone can be responsible for the appearance of power laws 
in the spectra. Random geometry can be regarded as a model (or source) of 
random hopping times. 

KEY WORDS: Random walk; anomalous diffusion; I / f  noise; current spec- 
tra; percolation. 

1. I N T R O D U C T I O N  

It  is by  n o w  an  e s t a b l i s h e d  fact  t h a t  m a n y  t r a n s p o r t  p r o c e s s e s  can  be well  

d e s c r i b e d  by  r a n d o m  wa lk  m o d e l s .  (I-7) T h e s e  i n c l u d e  such  d ive r se  

~Department of Fluid Mechanics and Heat Transfer, Faculty of Engineering, Tel-Aviv 
University, Ramat-Aviv, Tel-Aviv 69978, Israel. 

291 

0022-4715/87/0700-0291505.00/0 �9 1987 Plenum Publishing Corporation 



292 Goldhirsch and Noskowicz 

phenomena as conduction in amorphous semiconductors (2'3'8"91 and dif- 
fusion in porous media. (1~ 14) 

When conduction by electrically charged particles is considered, one 
should always worry about the interactions among the particles. However, 
in many cases these interactions can be safely neglected in constructing a 
transport model. A known case is that of hopping conduction in semicon- 
ductors, mentioned above. In general, when strong screening effects are 
present and the gas of electrons (or holes or ions, as the case may be) is 
dilute enough, an independent-particle model is expected to be valid, at 
least approximately. Even in metals, when one deals with phenomena on 
time scales that are much shorter than the inverse plasma frequency (and 
these are really very short times), the electrons can be supposed to be non- 
interacting. 

In the present work, we analyze the transport properties on a network 
on which there are noninteracting random walkers. We investigate the role 
of bias as well as the effects of irregular geometry. For  sake of definiteness, 
we employ an "electrical" language: we deal with "charges," "currents," and 
even "batteries." These notions should not be taken literally. Our work 
applies to neutral particles as well. In this case, the "battery" is merely a 
source of bias (and feedback) for the random walker, as is the mean 
velocity of the fluid in the process of diffusion in porous media. 

One of the most intriguing phenomena observed in many physical 
systems is known as " l / f "  noise. (~5) Many theories have been proposed as 
explanations of this effect. It seems quite unclear, at present, whether " l / f "  
noise is a universal phenomenon, having a common (mathematical) for- 
mulation, or that each observed " l / f "  behavior deserves a separate 
explanation. The work in this field ranges from that based on the theory of 
dynamical systems (16'17) to models of random hopping in systems with 
traps. C2'3'18'19) Since the present work deals with random walk on 
networks, C29'21) we are obviously close to the latter theories. The difference 
between the theory proposed here and the models that include traps is that 
we consider the role of geometry as a source of anomalous transport 
fluctuations. (22) We show below that a dangling branch in a network that 
can delay a random walker (and such objects are easy to construct) can 
mimic the effect of a trap. Conversely, given such a branch, one can replace 
it by a trap in a way that leaves the transport properties unchanged. In 
many systems, however, such geometric traps are the reality: percolation 
clusters (23) and porous media are typical examples. One can, of course, 
have both traps and dangling branches. 

The main model to be analyzed below is that of a one-dimensional 
segment composed of discrete points each of which is atached to a dangling 
or side branch. We choose, for simplicity, a discrete space and time nearest 
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neighbor hopping dynamics. The hopping may either be biased or 
unbiased. When unbiased hopping is discussed, it is assumed, for sim- 
plicity, that the hopping probability w is 1/4 (see also Ref. 22). 

We consider two kinds of mechanisms that are responsible for creating 
a current through the network: either an external bias or a current source, 
injecting particles at a constant rate at one end of the system. One of the 
problems discussed below is the nature of the current measured by an 
external device. (241 We deal separately with the total current in the 
network, which is the quantity of interest in many investigations ~2"3,6~ and 
with the current flowing through an external device connected to the 
system. 

The method of analysis of the models below is based on the approach 
developed in Refs. 20 and 21 and also employs results from a previous 
paper by us, (221 which we refer to as I. Our approach is fully analytic. 

The structure of the paper is a follows. In Section 2 we compute the 
properties of current fluctuations and their corresponding spectra for the 
model described above, using different boundary conditions and bias 
values. In the section we assume that all dangling branches are alike. This 
assumption is lifted in Section 3, where we consider a statistical ensemble of 
dangling branches. This assumption is obviously more realistic than the 
one made in Section 2. Indeed, as we shall see below, it leads to a 
modification of the transport properties. Section 4 offers a brief summary 
and a discussion o f  the results. 

2. C U R R E N T S ,  C O R R E L A T I O N S ,  A N D  S P E C T R A  

2.1. Tota l  C u r r e n t  Corre la t ions  

The quantity of interest in this subsection is the total current in a 
sample. (2'3"8) This is a quantity commonly referred to in investigations of 
conduction processes; it has been measured, for example, in amorphous 
semiconductors. (3'81 We consider a simple system consisting of a straight 
segment with dangling loops (see Fig. 1). The dynamics of the particles on 

d dd 0 
0 I 2 . . . . . .  N - I  

w 

N 

Fig. 1. The segment with loops (see text). 
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this network is that of hopping to nearest neighbors. The randomly 
walking particles are assumed to be noninteracting. This model has been 
described in I. As before, the process is assumed to be discrete in time (time 
is an integer describing the "number of steps"). Define Nc to be the number 
of carriers in the sample, e their effective charge, vi(t) the velocity of carrier 
i, and L the length of the sample. Then the instantaneous total current I(t) 
per unit length is 

e Nc 
I(t) =-~ .~ v,(t) (2.1) 

t = l  

The correlation function of the current fluctuations C(t) is 

C(t) = 6I(O) 3I(t) (2.2) 

where M(t)= l ( t ) -  [ and the bar denotes time averaging. Thus 

e2 eZrl 6v1(0) 6vl(t) C(t) =--~ N,. 5v,(O) 6v,(t)= ~ -  (2.3) 

and n is the charge density per unit length. Since all particles are 
equivalent, by assumption, we use i =  1 in Eq. (2.3). 

In the presence of an external field on the backbone a carrier is 
assumed to have probabilities Pl and P2 to go, respectively, to the right 
and to the left (the field points from left to right). For  definiteness, we 
assume Pl + P2 = 1/2 (if there were no dangling loops, the walker has a 
staying probability of 1/2 per step except for endpoints). A walker on the 
dangling loop is assumed to have a probability of 1/4 to move to its nearest 
neighbor. The rhs of Eq. (2.3) is zero unless the carrier is out of the loop 
both at time zero and t. (We assume that, once in a dangling bond, the 
carrier does not contribute to conduction, i.e., it has zero velocity in the 
direction of the field.) If the carrier is not inside a loop at time zero and it 
moves one step to the right, then v(0) = 1. If it is not inside a loop at time t 
and it moves then to the right, it will contribute v(t)= 1. In this case a con- 
tribution of 1 to v(0) v(t) multiplied by the appropriate probability will be 
made. Similar statements are true for motion to the left at both times or for 
one move to the left and one move to the right. 

Thus, for t ~ 0 a typical contribution to v(0) v(t) is equal to: 

The probability that the carrier is not inside a bond at t = 0 
(i.e., it is on the backbone) multiplied by 
the probability that it moves on its first 
step to the right (i.e., PI) multiplied by 
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the conditional probability that the carrier 
is on the backbone at time t -  1 (given that 
it was on the backbone at t = 0) multiplied by 
the probability that its last step is to the right (p~) (2.4) 

We have to sum over all possibilities for the first and last steps (right or 
left) with their appropriate signs (p2, p2, _p, P2, -P2Pl). We now con- 
sider each of the probabilities in (2.4). 

First, the probability for an arbitrary carrier to be on the backbone is 
equal to 1/m. This can be easily proven by writing a master equation and 
by taking into account the stationarity of the process. Thus: The 
probability Pb that the carrier is on the backbone at t = 0 is 

Pb(t = O) = 1/m (2.5) 

where m is the number of sites in a dangling loop. 
Define F(t) as the conditional probability that the carrier is on the 

backbone at time n + t if it was there at time n. Thus (for t # 0) 

(Pl--P2) 2 
vl(0) Vl(t) = F( t -  1), t>~ 1 (2.6) 

m 

Obviously: F (0 ) =  1. It is convenient to define F(t) for negative values of t. 
We define 

For t=O  

and 

F(t)={ F ( - t - 2 ) '  t=-lt~<-2 

v1(0)2-- p~ +P_~____2-- 1 (2.7) 
m 2m 

Pl - -P2 v,(o) = - -  (2.8) m 
which define the average velocity and mobility in the sample. Combining 
Eqs. (2.6) and (2.7), we obtain 

1 [b,,o ( ~ (pl--p2)2)+(pl--p2)2F(t 1)] v,(0) v , ( t )  m (2.9) 

Note that by stationarity 

Vl(O) v l ( t )  = v , (  - t) v , ( o )  
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The above definition of F(t) incorporates this time-reversal symmetry into 
Eq. (2.9). The generating function (~b probability in I)/~(z) is given by (we 
assume here periodic boundary conditions or an infinite sample) 

F =  Y,~ + I~,,(z/2)F (2.10) 

I~m represents the probability of going from a backbone point back to itself 
(including just staying there) without visiting any other backbone point. 
The second term in Eq. (2.10) represents the set of paths leading from a 
backbone point to a different backbone point. It involves a walk inside the 
loop of the original point (or staying there, i.e., IPm), followed by motion of 
a step (to the right or to the left) on the backbone, with probability 
(P l  q-P2) z = z/2,  which is necessary to get to another point, and finally a 
subsequent motion to any other backbone point (given by .f'). Solving 
Eq. (2.10) for/~, we obtain 

p _  Y,. 
1 --�89 (2.11) 

We return now to the current autocorrelation function C(t) [Eqs. (2.2) and 
(2.3)]. By stationarity C(t)=C(-t) .  Applying the Wiener-Khinchine 
theorem and using Eqs. (2.3) and (2.9), we obtain the spectrum S((o) 
corresponding to C(n): 

S(co)= ~ C(n)e' ..... (2.12) 
n =  : c  

The contribution of F to S(co) is 

ei'otg(t - 1)= 1 +2 Re[zF(z)] 
t =  o(3 

Recall that 

P(do) = ~ eiO'F(n) 
n = O  

(where z = ei~), i.e., it is a Poisson (one-sided) transform. Hence 

e2n f i (pl _ p2)2 I ,,=+oe ] 
S(c~162 - - l +  E F(n-1)  e'~ 

m n ~  o o  
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In (2.13) the last term is the Fourier transform of ([)2 (which is subtracted 
from I(t)I(0) [see Eq. (2.2)]. Recall that F(n)~ 1/m when n-~ oo by its 
definition. Thus, the Fourier transform of F(n) in Eq. (2.13) contains a part 
that is (I/m) 6(co). This part cancels the term containing 6(co) in Eq. (2.13). 
This fact can also be seen from a direct analysis of Eq. (2.11) [see Eq. (A.3) 
in the Appendix for the form of Ym(Z)]. 

The spectrum S(co) in Eq. (2.13) can be rewritten 

S(co)=eL--nm{~+2(p'-P2)2Re[zF(z)] (P~-P2)22rc~(co)}m (2.14) 

Note that the nonwhite contribution in Eq. (2.13), which we define as 
St(co), is derived directly from the generating function F(z). This feature 
appears to be general. 

In Fig. 3 a plot of Re[zF(z)] oc Si(co) is shown for m = 1000. For 
small co, we observe that S~(co)~ co-l/2 with a plateau ranging from co ~> 0 
to co ~ 1/m 2. In the Appendix, we present an analytic derivation of this 
result using the function Ym obtained in I. It should be noted that this 
behavior depends on the assumed type of side branches (or dangling 
bonds). For example, for the structure (blob) depicted in Fig. 2, we have 
Sr(co)~co-l/4 (see the Appendix). Thus, we obtain a 1If ~ behavior with 
c~ ~ 1/2 (for the simple loops) or c~ = 1/4 (for the blob). As in I, the cutoff 
for the power law dependence is provided by the length of the dangling 
loops. Here the condition is co > 1/m 2. The spectrum for the total current 
per unit length is 

e2nm -2 
S,(co) = 2 T vl Re z F(z)l~ = e,o~ (2.15) 

Fig. 2. The "blob" (see text). Each circle has a length m. 
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Fig. 3. Plot of S~(o9) against o) for rn = 1000 for the total current [see Eq. (2.14)1. 

where ~1 is defined in Eq. (2.8). The mean waiting time in a loop c~ was 
calculated in I and was found to equal 2 m -  1. Using the definition of [ in 
Eq. (2.1), one can write the spectrum as 

/2~ (2.16) S,(o)) = -NT,~ Re z F((z)l z= r 

This result resembles that of Tunaley, (6) but is of course deduced different- 
ly. Note that the prefactor [2/N,. corresponds precisely to the experimental 
findings. 

2.2. C u r r e n t  Cor re la t ions :  A l t e r n a t e  D e f i n i t i o n s  

Although the current correlations as defined above have properties 
compatible with experiment, they are not precisely the quantity measured 
by an amperemeter  attached to the ends of a system. (24/The current, in the 
strict sense, is measured outside the resistor and is defined as the net num- 
ber of charges passing through a cross section per unit time. Our model 
makes possible the use of this (standard) definition for the calculation of 
the current correlations and the spectra. (In other hopping models we are 
aware of, one deals with infinite or periodic systems, and end effects on 
current- -measured in a realistic way - - a r e  not considered). In this section 
we shall consider two models differing by their boundary conditions. 
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Consider  a segment  of length N (with dangling loops,  as before) at the 
ends of which ( , ,O" and  ~ there are connected two electrodes. We 
consider two possibilities for the b o u n d a r y  condit ions at the electrodes. 

Mode l  1. A Current Source at One Electrode. Assume that "0" and 
" N "  are coupled to reservoirs,  keeping the density ,o N at point  " N "  
constant .  For  simplicitly, we choose D N = O  ( "N"  os a sink). We assume 
that  particles are injected at a cons tant  rate p into the system. The  
average current  is obviously  p. The  current  at "N," however,  is a fluc- 
tuat ing quant i ty  since (in our  model )  the charges perform a r a n d o m  walk 
f rom "0" to "N." Define a set {X} of r a n d o m  variables: 

Xi,~(t), i =  1, 2,,.., p, ~ = - o o  ..... t (2.17) 

associated with the i th particle which was injected at t ime T and whose 
presence at " N "  is measured  at t ime t (which is also its t ime of first arrival, 
since " N "  is a sink by assumption) .  If present,  this particle contr ibutes  one 
unit of current  measured  at " N "  and X~,~(t)= l; otherwise, X~,~(t)=0. The 
ins tantaneous  current  at " N "  is 

and 

1N(t) = Z Y, 
r < t  i - - 1  

(2.18) 

Y~.;(t) = 1 with probabi l i ty  GN(t--~)  

X~.~(t) = 0 with probabi l i ty  1 - GN(t--  "c) 

where GN(t) is the first passage probabi l i ty  distribution, as defined in I. 
F rom Eq. (2.2) the current  au tocorre la t ion  function is 

C(t) = I(0) I(t) - p2 (2.19) 

By Eq. (2.18) we have 

C(t) : Y' ~, X,,,(0) X,,~,(t) - p2 (2.20) 
i,~ i ' , z '  

The s u m m a n d  in Eq. (2.20) decouples:  

Xi,~(O) Xi,~,(t) = Xi,~(0) Y<~,(t) (2.21) 

except for i = i' and ~ = r '  (since probabil i t ies  for different particles are, by 
assumpt ion ,  independent) .  In the lat ter  case 

Xi, T(0 ) Xi ,  T( t ) = O t, o �9 G u (  t - -  "C ) (2.22) 
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Hence 

c ( 0 =  E 
i ~ i ' o r r v a v '  

X~,~(0) Xr,~,(t) + ~. X,,~(0) X,,~(t) - pZ (2.23a) 
[,/" 

Thus 

c( t )=  
i , i ' , r , r '  

- E x,.~(o) x,,~(t) + y, x,.~(o) xi,~(t) - p~ 
i , r  / , r  

(2.23b) 

Since 

X i , ~ ( t )  = G N ( t - -  7,) 

and 

Xi.~(t) = 0 for t < r  

by its definition, and since Y~,{=oGN(n)=I (see Refs. 20 and 21), we 
obtain, using Eq. (2.22), 

C(t)=p~,.o p ~ Gx(n)Gx(n+t) (2.23c) 
ti = 0 

The absolute value in Eq. (2.23c) comes from stationarity. Note that the p2 
term in Eq. (2.19) is cancelled by the first term on the rhs of Eq. (2.23b), 
which is fully decoupled. It is interesting to note that for nonzero times the 
correlation C(t) is negative. The reason for this feature is the fact that a 
positive fluctuation of the current at "N" leads to a depletion of "charge" 
near "N," thus making the subsequent current less than its average. A 
similar argument holds for a negative fluctuation. This process can be 
regarded as a result of the "tendency" of the system to restore the average 
current following fluctuations. The spectrum S(co) corresponding to 
Eq. (2.23c) is 

S(o)) = p - p  ~ e ~~ ~ Gu(n) Gu(n + t) (2.24) 
t ~  oc~ n = o  

The last term in Eq. (2.24) can be evaluated as follows. It is shown in 
Appendix B of I that for the system with which we deal here, GN(n) is of 
the form Cn 3/2 in the range m 2 >> n >> N (C being a constant). For  n ~> m 2, 
the decay of Gu(n ) is exponential and for n between N and eN 2 (e is a real 
number satisfying 1/N~e~ 1), G N(n ) rises steeply from zero 
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[ G x ( N -  1 ) = 0 ] .  Thus, in order to compute the sum in Eq. (2.23), we shall 
model GN(n) in the following way: 

G N ( n  ) = 

0, n < aN 2 
Cn 3/2, aN 2 < n < m 2 

O, m 2 < n 

Substituting this equation into the sum and approximating the sum in 
Eq. (2.24) by an integral, we obtain 

fl "2 dn C(t) ~ - C p  2 
u2 [n(n+t)]  3/2 ~-p 

Defining n = fit, we have 

dp 
c(t) ~ - 7 -  ~,~/, [/~(p + 1)] ~/~ 

- c c p  2 c p  2 

fl3/2 t2 I2 JcN2/t ~6 

4~ 
[B(~ + 1)] 3/2 + p 

where eN2/t ~ 6 < 1. When m2/t > 1 we obtain 

C(z) ~2Cp2~5~ ,2 [_ 1/2 - ~ l ( t )  1/2] --75-Cp2k(5) + p  

where k(5) is a constant. Thus, the leading term for small co (but co > 1/m 2) 
in the Fourier transform of C(r) is of the type - A x / ~  with A a constant. 
Hence 

2Cp 2 
S(co ) ~ P - Ux/-~ \/~o 

The spectrum we have obtained contains a nonanalytic negative and non- 
white part. This result should be contrasted with those of Nieuwenhuizen 
and Ernst (25) and Lehr et a/., (26) in which S(co)~ const + co -~/2, when the 
total current is investigated. It would be interesting to find a system that 
exhibits this kind of behavior. 

We now present a more realistic system, which has feedback. 

Model B. ,4 System with Positive Feedback. The system is shown 
in Fig. 3. A particle arriving at "N" enters the "electrode" and is 
immediately transferred (on the next step) through a resistanceless battery 
to "electrode . . . .  0." It seems to us that this system is more realistic than 
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o 0 0 0  

Fig. 4. The segment with positive feedback. The current is "measured" in the "amperemeter" 
A outside the system. 

model A. The outgoing current is directly related to the incoming current, 
thereby producing feedback. The role of the battery is to create the bias 
inside the resistor by keeping the voltage constant. The number of carriers 
N~. is obviously kept constant. The system is periodic, with the exception of 
two sites. At "0" the probability of returning to "N"  is zero, while at "N" 
the probability to get to "0" is unity. Define, as before, a set of random 
variables { Y} as follows: 

)~1 if the ith particle (1 ~<i~< Nc)i  n at ' ) "  at time t 
Yi / ( t ) =  (2.25) 

" ]0 otherwise 

The current measured by the amperemeter at time t is thus 
Nc 

I(t)= ~ Y x(t) (2.26) 
i=1  

The correlation function C(t) is 

Nc Nc 

C(t)= ~ ~ Yi, u(O) Yi'u(t)--[2 (2.27) 
i = l  i" 1 

Since we are dealing with noninteracting particles, all the terms in 
Eq. (2.27) decouple except the one with i =  i', for which we may write 

N, 

ri, N(O) Y,,N(t) 
i - I  

= [(St,o + Nc 

x (Probability that carrier i is at "N" at t = O) 

x [Probabili ty of a transition from "N" to "0" in one step 
(which equals 1)] 

x [Probabili ty of a transition from "0" to "N" in t - 1 steps 
(not necessarily for the first time)] 
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Hence 

Nc 

Y,,N(O) Y: ,N( t )=f6 , ,o+N,P(N,O)P(N, t -1;N,O)  (2.28) 
i = 1  

where P(N, 0) is the probability to be at "N" at time 0 and P(N, t; N, 0) is 
the (conditional) probability of a transition from "0" to "N" in t steps. 
[The reason for the appearance of t -  1 in Eq. (2.28) is the fact that one 
step is "wasted" for moving from "N" to "0."] Substituting (2.28) in (2.27), 
we obtain 

C(t) = ~ Y:,N(O) Yc.N(t) + ~ Y,,N(0) Y:,N(t)-- [2 
i~i '  i 

(2.29a) 

Note that for ira i', the average in Eq. (2.29a) is decoupled (independent 
particles). Hence 

C(t) = ~ Y:,N(O) Yc.N(t) -- ~ Y:,N(O) Y:,N(t) 
i,i" i 

+ ~ Y,,N(O) Y,,N(t) -- [2 (2.29b) 
i 

Now, from Eq. (2.26) 

Y:,N(O) Yr,x(t) = :2 
i.i" 

Also, by the independence of the walkers, 

~, Y,,N(O) Y,,x(t)= N,. Y~,N(0) Y~,N(t) 
i 

or 

2 Yi, N(O) Yi, N ( t )  = :2/Nc 
i 

Substituting the above results in (2.29a), we obtain 

C(t) = ~ Y:,N(0) Yi, N(t) -- F /N ,  (2.29c) 
i 

Substituting Eq. (2.28) into Eq. (2.29c), we finally obtain 

C(t) = Ic~,, 0 + NcP(N, O) P(N, t - 1; N, 0) - [2/N~ (2.29d) 

Obviously, N,P(N,O)=L It remains to calculate P(N, t - 1 ; N ; 0 ) .  Its 
generating function frN(Z ) is found by the following argument. 
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A particle located at "N" goes to "0" at its first step with probability 1, 
i.e., the corresponding ~b probability equals z. It then goes from "0" to "N," 
for the first time, with ~b probability GN(Z). The process can be repeated 
indefinitely so that 

~qAz)  = zdN(~)  + [ z d A z ) ]  ~ + - . -  (2.30) 

and 

f l u ( z )  - z G u ( z )  (2.31) 
1 --  z d u ( z )  

The spectrum S(co) is then [see Eq. (2.12)] 

S(co) = i -  L_ 6(~o) + 2 i R e / t ( e  '~~ (2.32) 
Nc 

The term 3(co) is calceled by a similar term arising from Re H(e io) (see 
below for the structure of H), as happened in Eq. (2.13) above. 

In Appendix X of I it is shown that the generating function GN(Z ) in 
the case of infinite bias is 

t iN(z)  = [(�89 ~ (2.33) 

Hence in this case 

['~IN(Z ) -- Z[I~rm(Z)]N (2.34) 
1 - z [ -~?m(z) ]  N 

In the Appendix we show that in this case Re H(e io) ~ co -1/2 for small co 
that are still larger than 1/m 2. A similar power law is presented in Refs. 25 
and 26. Figure 5 is a plot of Re/~(8 ira) for N =  10 and m = 400. In Fig. 5, 
Re H(e ''~) is plotted in the case of zero, intermediate, and extremely large 
bias (p~ =0.499), p2= 0.001). We use the exact expression (C.14) in I for 
GN valid for arbitrary bias. Only in the case of strong bias does one 
observe a clear power law behavior. (In I, bias is defined as p~ oc e b and 
P2 oC e-b, Pl  q- P2 = 1/2.) 

In experiments, (15) the observed " l / f "  spectra are proportional to 
[2/Nc. To understand this fact, note that NcP(N, 0)=/~ P(N, 0 ) =  1/N 
(homogeneous distribution), and thus [IN = i2/Nc. Moreover, /~ oc 1/N, as 
shown in the Appendix (for infinite bias). Hence, from Eq. (2.32) 

/Re /4 ( e  i~ oc [2/N c 
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Fig. 5. Plots of Re H(e ~'') [-ocSl(co)] for N= 10, m =400 for three values of blas: p~ =0.25 
(no bias), PI =0.37, Pl =0.499 [see Eq. (2.32)]. 

as observed experimentally�9 This result is correct in the limit of large bias. 
Thus, the strong bias in experiments is not only necessary to "overcome" 
other noises in the system. In our model (and perhaps in reality) the strong 
bias is necessary in order to have the effect in the first place. 

3. EFFECT OF T H E  D A N G L I N G  B O N D  D I S T R I B U T I O N  

To make our model more realistic it is certainly appropriate to 
introduce a distribution P(m) of lengths rn of the dangling bonds. 

The generating function for first passage (~x(Z) averaged over all 
possible configurations {m} (too, r nl ..... raN_l) of the lengths of the 
dangling bonds reads 

GN(Z)= ~ P({m})GN(Z, {m}) (3.11 
{m} 

where GN(z, { m } ) i s  the generating function for realization {m} and 
(assuming the different mi to be statistically independent) 

N - - I  

P({rn})= [ I  P(m,) (3.2 t 
i = o  

822/48/1-2-20 
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Define 

1?(z) = ~ P(m) 1?m(Z) (3.3) 
{m} 

1?(Z) can be calculated once P(m) is known. In the case of infinite bias 

(2)" GN(Z) = Z [I P(mi) 1?,~s = 17 (3.4) 
{m} i = 0  

Define P~(z, {m}) to be the generating function for motion from site "i" to 
any other site on the backbone. P, is the generalization of F(z) defined in 
Eq. (2.10) for the case of loops of uniform lengths. F, is given (for any bias) 
by 

~'i = 17,,+ Ym, plzFi+l Jr- Ym, P2Z~',_l (3.5) 

In Eq. (3.5) the first term stands for a walk in which the particle does not 
leave site "i" to another site in the backbone. The two other terms 
represent a walk in which the carrier enters the loop as many times as it 
wishes, then does a step to the left (right) and at this site the generating 
function to move to another site on the backbone is Fi-1 (or Pi+ 1). Defin- 
ing the configuration average of F, by 

and approximating 

~'= ~ P,,,,['i(z, {m}) 

we obtain 

Ym,(Z) F,(z, {m})= Y,,N(Z) Fi(z, {m}) 

F =  I?+ 1?(z/2)F (3.6) 

for an infinite system (this is a mean-field-like approximation). In order to 
proceed, we need to know the distribution P({m}). 

The commonly accepted picture that emerges from percolation theory 
is that conduction is limited to the backbone, a substructure of the 
percolation cluster. Most of the mass of the cluster is concentrated in the 
dangling bnds, which by definition do not participate in the average 
conduction. It is reasonable to assume that the dangling bond lengths have 
a power-law distribution P(m) up to a cutoff m,. Thus, 

P(m) oc m --~, m < m  C 
(3.7) 

P(m)~O, rn>~m,, 



A n o m a l o u s  F l u c t u a t i o n s  in R a n d o m  W a l k  D y n a m i c s  3 0 7  

We have used Eq. (3.3) to compute S(co) as given by Eq. (2.32). As before, 
we have substituted in Eq. (2.31) the generating function, GN, as given in 
Appendix C of I. We have replaced I7,~ by its configuration average I 7. 
Figures 6 and 7 present Re H(ei~)c~ $1((~) versus ~o for several values of x 
(x = 0.1, 0.9, 1.7, assuming strong bias, i.e., Pl = 0.444 in Fig. 6; and x = 2.1 
and 2.3, assuming very strong bias, Pl =0.499, in Fig. 7). In both figures 
N =  10 and the cutoff is m~. = 1000. (Both figures correspond to the system 
with feedback depicted in Fig. 4.) It can be seen that Sz(co) exhibits a 
region in which a power law behavior is observed. For x/> 2.3 no power 
law regime is obtained. In the Appendix we study analytically the following 
two types of spectra: the first is for the case of infinite bias in the system 
with feedback (see Fig. 4) and the second is the total current spectrum [on 
the basis of Eq. 2.16)]. In both cases we show that S~(co) oc co -x/2 with a 
b r e a k d o w n  of the power law behavior for x > 2.26. For x = 2 the power 
spectrum is exactly " l / f "  like. Thus, in our model there can be no 1 I f  ~ 

"".. 

' ~  "',. 

I 0  -I 

Strong Bias 

P~ =0.444 

I0-~-  Pz :O.056 

1 I I 
l d  5 Id  4 i0 -3 i0 -~ " ~  

Fig. 6. Plots of Sj(o.~) for x=0 .1 ,  0.9, 1.7 for strong bias, where x is the parameter of 
dangling bond distribution [see Eqs. (3.7) and (2.32)]. 
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Plots of S~(o)) for x = 2 . 1  and 2.3 in the case of very strong bias. The break in the 
curve also occurs for low values of vias. 

spectrum with c~ > 1.13 (see Appendix). The generality of this result remains 
to be investigated. According to experiments, (~5) c~ < 1.4. The relevant value 
of x for a percolation cluster or other systems is not yet known. If one 
assumes that S~ oc ~o-~/2 is of general validity, it follows that x ~ 2 for most 
systems, i.e., P(m) oc rn 2. Since, as we have shown before, 2 m -  1 is the 
mean time spent in a cluster [see Eq. (4.10) in I ] ,  it follows that the 
probabili ty distribution for the mean time r spent in a side branch (or a 
trap) fi scales like P oc ~-2 (see also Ref. 25, but compare to p ~ - i  in 
Refs. 15 and 27). 

The validity of this result is under investigation. 

4. S U M M A R Y  A N D  C O N C L U S I O N S  

In this investigation we have exhibited a mthod for computing current 
fluctuations and the corresponding spctra. We have shown how power laws 
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emerge in the spectra as a result of the existence of dangling bonds. The 
role of bias in the production of these power laws has been elucidated. 
Among our results, we wish to mention the appearance of " l / f "  noise, 
including a prefactor that is in agreement with experimental findings. We 
have seen the role of the length of the dangling bond as a provider of a 
cutoff for the power law behavior. In some cases we have observed the 
crossover between regions in the spectrum characterized by different power 
laws. It is amusing to note that, when one considers the total current in the 
system, a " l / f  "-like spectrum is possible even in the presence of weak bias. 
The current, as measured by a "device" connected to the extremes of the 
network, has been shown to have a power law region in the spectrum only 
in the presence of strong enough bias. When a distribution of dangling 
bond lengths is considered, the nature of the resulting power laws in the 
spectrum depends directly on the nature of the assumed distribution. 
Having in mind percolation networks, we considered a power law distribu- 
tion for the length of the dangling bonds. The resulting power spectrum for 
the current was directly related to the exponent appearing in the dangling 
bond distribution. This result suggests, at least to some extent, that " l / f "  
noise is not really a universal quantity (unless we define the power law 
characterizing a distribution of dangling bonds as a parameter determining 
a universality class). An interesting feature is the observation that when the 
exponent characterizing the distribution of bond lengths exceeds 2.26, " l / f "  
behavior is no longer possible in our model. 

The extent to which this result is general remains to be seen. 
Finally, we wish to comment on the fact that our model is basically 

one-dimensional. It seems that in percolating clusters, as well as in other 
random systems, the backbone is basically composed of one-dimensional or 
quasi-one-dimensional "channels," which are located quite apart from each 
other. Thus, in spite of the one-dimensionality of our model, it may be 
more realistic than may appear at first glance. Moreover, our results seem 
to be in agreement with those of numerical simulations done on percolating 
clusters and with experiments exhibiting " l / f "  noise (e.g., the prefactor of 
the power law) and with diffusion experiments in porous media. 

The investigation of current fluctuations in higher dimensional models 
is of course a worthwhile project, which we are attempting at present. 

A P P E N D I X  

A1. A s y m p t o t i c  Behav ior  of  the  S p e c t r u m  for  Smal l  m 

In this Appendix the term spectrum refers to the nonwhite (i.e., non- 
constant) part of the spectrum. The total spectrum is clearly positive. The 
nonwhite part, which is computed below, can be negative. 
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We first note from Eq. (2.14) that the spectrum of the total current 
correlation is proportional to R e [ z F ( z ) ] .  Using Eq. (2.11), we have 

2/z  (A.  1 ) 
S(eo) oc Re (�89 - 1 -  1 z=e i~ 

The spectrum of the current through the endpoints (the system with feed- 
back) is given in Eq. (2.32). The spectrum is proportional to Re/}(ei~ In 
the case of infinite bias (in practice very large) we use Eq. (2.34) and we 
obtain 

1 z = e 'a' ( A . 2 )  S(co) oc Re z I ( � 8 9  1 

Note that if we set N =  1 in Eq. (A.2) we recover the spectrum in Eq. (A.1) 
[apart from the factor z -1 ( z~  1 +i~o), which equals unity for small 
frequencies, and thus does not influence the asymptotic results]. Thus, we 
shall concentrate on the spectrum given by Eq. (A.2), since the spectrum of 
the total current autocorrelation is the special case of it. 

From paper I [see Eq. (A.11) in I]  we have 

2 e  - ia~ 

Ym(e i~) ~ (A.3) 
1 - sin 0 tg (mO/2)  

where 
1 

e i~ = (A.4) 
cos2(0/2) 

For (o ~ 0, 0 = 2(i(~o) 1/2. In the same limit 

mO sin[rn(2co) 1/2] + i sinh[rn(2oo) 1/2] 
tg ~ - -~  cos[m(2oo) l /2]  + cosh[m(2co) l /2  ] (A.5) 

When m x / ~  >> 1 and o) ~ 0, then tg(mO/2)  ~ i from Eq. (A.5). Hence 

2e-i~ 
fZm ~ 1 --  2i(ico) 1/2 (A.6) 

On the other hand, for m x/-~ ~ 1, 

2e - ico 

Ym ~ 1 -- 2imco (A.7) 

Using Eqs. (A.2) and (A.6), we obtain for the spectrum in the case of 
infinite bias 

1 1 1 
S(~o) oc with co (A.8) 

2 . , ,~No 1/2 m-7 < < ~  



Anomalous Fluctuat ions in Random Walk Dynamics 311 

The upper limit for the validity of Eq. (A.8) follows from the fact that in 
Eq. (A.2) we Taylor-expand an expression raised to the Nth power. 
Therefore, in the same limit, it follows from Eqs. (A.I) and (A.6) that the 

spectrum corresponding to the total current, for m ~  ~> 1, is 

1 
S(co) oc 2x/~col/~ 

Here, the range of validity is as in Eq. (A.8), where one substitutes N =  1. 
When co ,~ m 2 the real part of both spectra vanishes, as can be seen by sub- 
stituting Ir m from Eq. (A.7). 

A2. The Dangling Blob 

In I we introduced the blob, i.e., a loop-within-loop structure (see 
Fig. 2). Yb(rn), the analog of I7,,, is [see Eq. (A.30) in I]  

1 
I>b(m) (A.9) 

1 - (z /2 )2  l>m{ l _+ [1 - ( z Y m / 2 ) 2 ]  1/2 } -1 

The choice of sign in Eq. (A.9) depends on F [see Eqs. (A.23) (A.27) in I]:  

1 - E1 - (z I~m/2) 2 ] 1/~ 
F =  (A.10) 

1 + [ 1 -  ( z Y m / 2 )  2] I/2 

For small co but rnxf~  >> 1 we have, using Eq. (A.6), 

1 - [ - 2 i ( 2 i c o ) 1 / 2 ]  1/2 + 27/4ei~7/so)l/4 F ~  ~ 1 (A.11) 
1 + [ - 2 i ( 2 i c o )  1/2 ] 1/2 

In this limit, F <  1 and we must choose the positive sign in Eq. (A.9). Thus, 
using (A.6), we obtain from (A.9), in the same limit, 

I~b(m) ~ 2{ 1 - [ - -2 i (2 ico)  1/2 ] l/Z} (A. 12) 

The spectrum of the current in the infinite-bias case [see Eq. (A.2)] is 

1 
S(co) oc Re c--(N+ l)im{ 1 -~- N [ - - 2 i ( 2 i c o )  1/2] - 1 } 

S(co) oc ~ R e  [_2 i (2 ico)1 /211 /2  oc ~ c o s  co 

Once again we obtain a power law behavior. 
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When rnx/-~ ~ 1 we obtain from Eq. (A.7) 

1 - [1 - 1/(1 - imco)2]  1/2 23/2 1/2] 
F ~  1 + [1 - 1/(1 - imco)  2] 1/2 ~ 1 - exp[(irc)3/4(mco) 

Here F >  1 and we must choose the negative sign in Eq. (A.9). Hence, in 
this limit 

1 
* b t m  , ~ 1 - !ei~'[ (1 - imco) - ( - 2 i m c o )  1/2 ] -1 

2 k 

o r  

Yb(m)  ~ 211 + (--2imco) 1/2 ] 

Substituting this result in Eq. (A.2), we obtain 

1 
S(co) oc Re 

e-~,,oiN+ ~1[l + ( _ 2 i m c o ) l / 2 ]  --N 1 

1 
Re 

- N (  - 2imco)1/2 

1 
S(CO) oc N,,~mm co 1/2 

Thus, when co >> 1/m 2 we have S(co) oc co-1/4 and when 1/m2>> co it follows 
that S(co)~ co-1/2 (in both limits we must have Nx/-~ 41) .  It is interesting 
to note that in this case the power law does not have a lower cutoff. This is 
due to the fact that the blob is infinite. Note that in I it is shown that the 
waiting time distribution of the blob has a power law decay n-s/4. It  can be 
shown that for dangling bond structures with waiting time distribution 
gt,,(n) oc n (1+~) then S(co) oc co-~. This can be deduced from a 
Tauberian argument. We recall that I5~, is defined as the Poisson transform 
of ~Um(n ). If grin(n) is given by the power law just described, one obtains 
from a Tauberian argument I),~ oc 1 + ~cco =. In the limit co --+ 0, Eq. (A.2) 
yields S(co) oc co ~ by a derivation similar to the one presented here. 

A3. D i s t r ibut ion  o f  Dang l ing  B o n d s  

The Y function [see Eq. (3.3)] is 

ei~ f 7  c m t g ( m O / 2 )  dm Y(ei~~ = ~ -  ~ I - sin 0 

where rn~ is a cutoff and K is the probability normalization. 

(a.13) 
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For co small and m , , ~ >  1, Eq. (A.13) reads 

mO 
2e-i~ ~ 1 + ~cO f~c (m-X)  tg T dm (A.14) 

We consider two regions: mO/2~ 1 and mO/2>~ 1. In the first region 
tg(mO/2) ~ mO/2, whereas in the second tg(mO/2)~ i. Thus, from Eq. (A.14) 

K02 ~2/0 f2 TM /0 m 1 Xdm+KOi m Xdm (A.15) 2e ;~'IT"(e;~ 1 + - ~ - q  

Hence 
to2 ~ -x  ~c 

2e-;~176 1-~ [ ( x -  1) + i ( 2 -  x)]O ~ - -  0 2 
(2 - x) (x  - 1 ) 2(2 - x) 

(A.16) 

where we have neglected the term in m c~ x, assuming x > l (see text). Note 
that from Eq. (A.16) one has that the waiting time distribution behaves like 
t 1 c~/2) for large t. In this limit, S(co) for infinite bias [see Eq. (A.2)] is 

1 2 - x  (A.17a) 
S(co) ~ ~ Re [ 21 x/( 1 -- X) ] [ (x -- 1 ) + i(2 -- x) ] 0 x + 02/2 

We distinguish two cases, x < 2 and x ~> 2. In the first case the first term in 
the denominator of (A.14) dominates in the limit 0 --+ 0 and 

1 - 0  - x  
S ( c o ) ~ - -  2~- ~(2-  x ) ( x - 1 )  Re ( x - 1 )  + i ( 2 -  (A.17b) 

Using 0 ~ 2(ico) for small co, we have 

1 ( 2 -  - -  S(CO)~2Ntc(x___~)x)(+(f_~)2A(x)CO x/2 (A.18) 

where 

A(x)  = (2 -- x) sin(~x/4) -- (x -- 1 ) cos(r~x/4) (A.19) 

and A ( x ) > O  for x < 2 ,  as it should. When x > 2 ,  the term in 0 2 in the 
denominator dominates. This term is imaginary and will not change the 
sign of the spectrum in Eq. (A.17a). At x = 2 ,  A(x)  changes sign and 
becomes negative. For  x > 2, S(co) stays positive because of the prefactor 
( 2 - x )  in Eq. (A.17b). There is, however, a value x for which the spectrum 
becomes negative. This value is found as the solution of the equation 

rex x -  1 
(a.20) t g - ~ - = 2 _  x 
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[i.e., A ( x ) =  0] .  T h e  s o l u t i o n  is x ~  2.26. Thus ,  x = 2.26 is the  l imi t  va lue  

a b o v e  wh ich  no " l / f "  no i se  is poss ib le  in o u r  mode l .  
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